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DISCRETE-EVENT-DYNAMIC-SYSTEM-BASED APPROACHES FOR CONTROL-
IN INTEGRATED VOICE/DATA MULTIHOP RADIO NETWORKS

1 Introduction

This report contains the results from our work under contract N000014-92-J-2017 for the period
10/1/92 - 9/30/93. It describes the progress made towards the effort to develop and apply new
discrete-event-dynamic-system-based techniques for the transmission scheduling problem in Radio
Networks (RN). The report is in two parts: in part one we examine the transmission scheduling
problem in the context of (fixed length) data traffic. In contrast to our earlier work, performed
under contract N000014-91-J-2025 [3, 4], which dealt with the broadcast scheduling problem in a
fully connected packet RN, the first part of this report extends the proposed methodology therein
to general topology networks. In part two, we look at the scheduling problem when processing
packetized voice calls' in a N-node multihop RN. As will be seen, the different Grade-of-Service
(GOS) requirements associated with voice and data traffic lead to two decidedly different scheduling
policies. We begin with a brief review of the transmission scheduling problem in N-node Radio
Networks.

In such networks there are N nodes that wish to broadcast over a common channel. In order
for a node to successfully transmit, the following primary interference constraint must be satisfied:
if node i transmits, then all nodes that are within node i's broadcast zone must be in a receiving
mode. Thus, all such nodes j are viewed as "neighbors" of i, connected to i through links (ij).
In addition, there may be a secondary interference constraint, whereby if i is transmitting and
j is connected to i, then all nodes k that are also connected to j must be in a receiving mode;
otherwise, a (k, j) transmission interferes with the (i, j) transmission. In short, there are (generally
overlapping) subsets of the N nodes, known as transmission sets, such that all nodes in such a set
can simultaneously transmit without conflict (i.e. without violating the interference constraints).
Given a slotted time line, the problem becomes the assignment of each time slot to a particular
transmission set [10, 9, 18, 20, 23] so that some desirable performance can be attained.

There have been several approaches for solving the transmission scheduling problem (see
references in [3]), however here, as in [3, 4], an alternate approach is proposed which uses on-line
adaptation of the schedule (in a stochastic operating environment), to achieve the desired system
performance. An important distinction between the existing literature and the work reported here
and in [4] is that no distributional information at all about the arrival processes at the various
network nodes is required.

As described in [4], the transmission scheduling problem can be placed in the context of a
"polling" system where the channel is modelled as a single resource (server) which provides service
to a set C of transmission sets. At each network node i, i = 1, ... , N, there is a customer2 arrival
stream characterized by arbitrary interarrival time distributions Gi with rate A,. Let .4 denote the
set of arrival streams. Note that we allow for correlation within an individual queue arrival stream,

'In this report it is assumed a voice call is comprised of an arbitrary number of fixed-length packets, with constant
interarrival times.

2 The term "customer" can refer either to a data packet or to an entire voice call.
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as well as between streams. A customer from a particular arrival stream is allowed to join one of
several prespecified transmission sets associated with that stream. Therefore, a transmission set
Ci is such that Ci C A and, in general, Ci n Cj 0 0 for i $ j. The importance of the distinction
between "transmission set" and "arrival streams" is the following: when the server is allocated to
a transmission set, it can serve multiple customers simultaneously, one from every arrival stream
that can belong to this set. As an illustration, consider the four-node RN with three transmission
sets shown in Figure la. The equivalent polling representation is shown in Figure 1b, where, a
customer from arrival stream 2, for example, may join either transmission set 1 or 2. In the latter
model, a customer is held at the head of its arrival stream queue until the server is assigned to
either transmission set 1 or 2; it is then instantaneously transferred to the appropriate queue and
served (while another customer from another arrival stream may also receive service at the same
time). We assume that time is slotted (with slot size set equal to the packet transmission time),
such that a scheduling decision is made at the beginning of every slot. The rule by which the server
is assigned to a particular queue is known as a polling policy.

The choice of an appropriate polling policy is governed in part by the traffic GOS require-
ments. Data traffic is characterized by a tolerance in the end-to-end packet delays, but no tolerance
in packet loss. Therefore, in packet RN we assume infinite buffers at each network node and such
that packets can be queued with no additional penalties. Our objective is then to select a polling
policy so as to minimize the mean packet waiting time. In contrast, packetized voice traffic can
tolerate some loss (without a severe deterioration in the voice playback), however it is sensitive to
end-to-end delays. In addition, it is desirable that packets reach the destination in the order in
which they are transmitted. Assume that the desired GOS for voice calls can be expressed in the
form of a stringent upper bound on the end-to-end delay of packets belonging to a voice call. Thus
we deal with the problem of serving delay-sensitive traffic in the following sense: packets cannot
be queued for more than n time slots, where n is fixed. Thus, upon arrival, a voice call is either
accepted if this constraint can be satisfied, or it is blocked. Blocked calls are assumed to be lost
from the system, a mode of operation known as 'blocked calls cleared' The objective then is to
determine the polling policy that minimizes the probability that a voice call is blocked.

For RN's with data traffic, as discussed in [3], we consider a non-cyclic polling policy, in
particular, a non-work conserving3 probabilistic policy with zero switchover times, where the current
time slot is assigned to transmission set i with probability 9i. We refer to this policy as 'random
polling'. The 9i's then represent control parameters, which can be gradually tuned or optimally
selected so as to achieve a desired system performance. In scheduling delay sensitive voice traffic
we consider a cyclic policy, where the polling cycle is specified by a frame comprised of n slots, such
that a slot is uniquely assigned to a particular transmission set. Thus, a frame is characterized by
a vector [c,'. . ., c,•] where ci E {1, .. ., M} is the transmission set assigned to slot i and M = IC[
where I - I is the cardinality of a set. Note that the frame structure allows us to guarantee an upper
bound on the intervisit time to any transmission set. In the case of delay-sensitive traffic, we can
therefore ensure that no transmission set ever waits for more than n time slots.

In contrast to random polling, the scheduling problem under cyclic polling is formulated as a
stochastic discrete optimization problem over a finite set, and is an instance of the general stochastic

3 A policy is work conserving or nonidling if the server is assigned to a transmission set if and only if there are
customers present in one of the arrival streams belonging to that transmission set.
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resource allocation problem where n resources (slots) are to be assigned to M users (transmission
sets). Rather than solve the original discrete optimization problem, which can easily become
combinatorially explosive, we propose a new approach [6] whereby we transform the former into an
auxiliary continuous optimization problem, which in turn can be solved quite efficiently through
various gradient-based algorithms. Finally, the choice of a state-independent scheduling policy is
motivated by the simplicity of the controller, i.e., the fact that no monitoring of state information
(queue lengths) is involved. In fact, in many complex systems, including radio networks, it is often
the case that state information is either impossible to obtain or it may not be up-to-date for a
real-time controller to use.

The remainder of the report is organized as follows. In section 2 we present a formulation of
the transmission scheduling problem % it h overlapping transmission sets in the presence of data traf-
fic. This formulation reveals the need fur estimates of the sensitivities (gradient) of the performance
measure with respect to the slot assignment probability parameters Oj, based on which simple on-
line optimization algorithms are proposed. We present one such estimator for the case where the
performance measure is the mean packet waiting time. In section 3, we present a gradient-based
optimization algorithm for obtaining optimal slot assignment probabilities using our approach for
several networks, including examples illustrating the adaptive features of the approach. In section
4, our aim is to use our approach to subsequently obtain a deterministic (non-randomized) sche-
duling policy, thus avoiding the randomization in the slot assignment process. We develop such a
deterministic policy using the Golden Ratio policy proposed in [15], and compare it with several
other policies, including a simple Round Robin one. In section 5 we consider the problem of serving
delay-sensitive voice traffic. In section 6 we formulate the optimal scheduling problem as a stocha-
stic resource allocation problem, and describe how we transform the ensuing discrete optimization
problem to a continuous optimization problem. This formulation reveals the need for estimates of
the sensitivity (gradient) of performance metrics with respect to the control parameters. In section
7 we derive such estimators based on the 'marked slot' approach proposed in [4], and develop ex-
plicit algorithms for gradient estimators of blocking probability under two modes of delay-sensitive
operation. In section 8 we present a convergence result which delineates the relationship between
the discrete optimization problem and the auxiliary continuous optimization problem. In sections
9 and 10, we illustrate our methodology by discussing two applications which can be modelled as
resource allocation problems. Lastly in section 11 we discuss ongoing research problems.

2 Transmission Scheduling Problem Formulation with Overlap-
ping Transmission Sets

Consider a N-node RN with data traffic. At each node i, i 1, ... , N, there is a process charac-
terizing data arrivals, where, as before, we assume an arbitrary interarrival distribution for data
packets and allow for correlations between arrivals. From a terminology standpoint, we will use
"node" and "arrival stream" interchangeably. Our starting point is to assume that a finite number
of transmission sets (M) has been identified such that all nodes in the RN belong to at least one
such set. Moreover let there be one or more overlapping transmission sets (i.e., a packet from some
arrival stream (node) may be served in transmission set i or j / i). Let Zi be the set of transmission
sets to which the ith arrival stream belongs. For example, in the 4-node network shown in Figure

4



la, node 2 belongs to transmission sets 1 and 2 so that Z 2 = {1, 2}. Similarly Z3 = {2, 3} and so
on.

Let us focus on average packet waiting time as the cost function of interest, and let Oi,
i = 1,..., M be the probability that a slot is assigned to transmission set i (assignments are made
independently from one slot to the next). We define 0 to be the M-dimensional slot assignment
probability vector [01,."., OM]T and Wi(0) as the expected node i waiting time. Our objective is
to determine the optimal slot assignment vector so as to minimize a weighted sum of the mean
packet waiting times associated with each arrival stream, subject to normalization and stability
constraints. Thus, the optimization problem is formulated as:

Problem PI:

N M

mrin s_ tw (0) . 1 =1I
i= j=l

where Ci is the weight associated with stream i. In the above problem formulation we do not
explicitly include the stability constraint, rather, we take this into account in the final optimal
assignment by simply ensuring that every adjustment made to Oi never violates this constraint.
Observe that the mean waiting 2;de Wi is a function of the probability that stream i is assigned a
transmission slot, which is given by O 0j. This motivates the definition of a new N-dimensional
control vector 4 with elements

1= j, i= 1,...,N (2)
jE Zi

that is, Oi is the probability that a time slot is assigned to a transmission set that contains stream
i (and hence a packet from stream i, if present, is served). With the introduction of 4, we can
rewrite P1 as

Problem P2:
N

minECiWi(Oi) s.t. gi(f)= ,,9.(f) Cn (3)
4)i=1

where we replace the single normalization constraint by one or more constraints on the auxiliary
variables which we obtain from the N equations of the form (2). From the theory of Lagrangian
optimization, there are simple Kuhn-Tucker conditions that provide necessary conditions for op-
timality. If a Lagrange multiplier is associated with each constraint in P2, after eliminating the
multipliers we obtain conditions which are typically of the form

L 0aO K 0Wk(¢k)
E C _ E Ck a0k (4)

i=1 k=1

for some K, L < N. In the absence of analytical expressions for Wi(oi), i = 1, N, we can
use standard gradient-based optimization algorithms (hill-climbing or steepest-descent) [21, 8] to
find the optimal V', provided the gradient in (4) is available. The corresponding ®0 can then be
obtained as a solution of the N linear equations (2). Alternatively, since the 0j's are themselves
variables dependent on E, we may choose to control the Oi's: thus the minimization may be done
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by adjusting 0 directly; an example will be given in the next section. The coupling between the
transmission sets is now reflected in the adjustments of Oi's so as to achieve the derivative balance
required by (4).

The preceeding discussion motivates us to seek techniques for estimating " by simplyo~i
observing the actual system in operation (or by simulating it). Along these lines, two approaches
which have been proposed are Perturbation Analysis (PA) (e.g. [11, 14]) and the Likelihood Ratio
(LR) methodology (e.g. [19, 12]). In this report, we apply PA techniques to estimate the sensitivities
in question. The main idea in PA is to estimate W() through the sample derivative OL.(•(¢,,))

t0hirog
where Li((O(i, w)) is a sample function obtained when a particular sample path (€i, w) is observed,
and Ji(¢i) = E[Li(ý(¢i,w))]. Here, w is an element of the underlying probability space 1, which
is taken to be [0, 1]'; thus, w is simply viewed as a sequence of uniformly distributed random
variables in [0, 1]. A sample derivative obtained through this approach is an unbiased estimate of
81i~.) provided that [2]

E a (5)

Since the form of the derivative estimator is the same for each transmission set, let us concentrate
on an isolated transmission set. In particular, the queueing system corresponding to transmission
set i behaves like a modified G/D/1 queue with vacations, where vacations correspond to periods
when the server is unavailable to transmission set i (i.e. the server is busy serving packets from
other transmission sets) and service is synchronized to coincide with the start of a slot. That is, at
the start of every interval of 6 time units (i.e., each slot), the server is available to transmission set
i and with probability (1 - qi) the server goes on vacation. A slot that is assigned to transmission
set i is termed a 'transmission slot', otherwise it is termed a 'vacation slot'. We used the term
modified G/D/1 above, because an arriving customer must always wait until the end of the slot
within which it arrives, even if the server is available (normally, this customer would immediately
start service).

The key idea on which the estimator is based is to evaluate the effect of altering a given
schedule (sequence of slot assignments) by converting one vacation slot to a transmission slot on
an observed sample path. The vacation slot added to some hypothetical new schedule is termed a
phantom slot. In presenting the estimation algorithm we define the following sample path quantities
(based on a continuous-time model):

"* K - Observation interval in number of busy periods

"* N - Number of node i packet arrivals during observation interval

"* Ai - Arrival epoch of the ith packet in the jth busy period

"• Ti,j - Time instant when the ith transmission slot in the jth busy period begins

"* Vi - Time instant when the ith vacation slot in the jth busy period begins

"* vj - Number of vacation slots in the jth busy period.

"* bj - Number of packets in the jth busy period.

6



* /ij [-jj] - Packet index of the first [last] packet affected by the removal of the ith vacation
slot in the jth busy period.

Figure 2 illustrates the aforementioned notation where vacation slots are shown darkened,
arrivals are represented by arrows above the horizontal time axis, and departures by arrows below
the time axis. In Figure 2, phantomizing (i.e., removal) of the 2nd vacation slot from the mth
busy period introduces a service slot between the 1st and 2nd original service slots and causes all
remaining customers in the busy period to begin service one service epoch earlier. Thus, the first
customer affected by this additional service slot is the second arrival i.e., 3 2, = 2. On the other
hand, the last customer to be affected is 72m = 3. Finally, as a consequence of the phantom slot,
the busy period in the nominal sample path has been split into two busy periods in the perturbed
sample path.

We now state the following theorem (the proof can be found in [7]):

Theorem 1 An unbiased estimate of a is given by:

[ ] N1 K o,
-_ E [v, 1j -8iest N ~ l Fi) E

where
13j =argmax{m : Tmj < Vj}+ mI = +,...,bj-1

-yj = argmin{m : Am+i,j < Ti,} m = ij, ,bj

and, by convention, Ab,+l,j _= AIj+1

Observe that the first double summation (over the Vij terms) is simply the sum of the vacation
slot epochs, and in addition all remaining quantities are directly measurable from the sample path.
An algorithm for implementing an estimator based on Theorem 1 can be found in the appendix of
[7]. From an implementation viewpoint memory/computational overhead is minimized by noting
that the majority of the sample-path quantities (in particular Ti, and V¼5) need to be stored only
for the duration of a busy period.

Finally, note that an estimator based on the dual process of converting a transmission slot into
a vacation slot can also be similarly developed. We refer to transmission slots to be removed from
the nominal system sample path as marked slots. Although marking (i.e., converting a transmission
slot into a vacation slot) can be viewed as the dual process of phantomizing, there arise some
fundamental differences between the Phantom Slot and Marked Slot estimator. Most notably, in
the Phantom Slot estimator, perturbational effects are localized to the busy period within which
they originate; as a result, implementation and analysis can be carried out for every busy period in
isolation. Alternatively, in the Marked Slot estimator, the result of a perturbation due to marking
a service slot in some busy period can propagate to subsequent busy periods and thus busy periods
in the perturbed sample path may coalesce.

7
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3 A Schedule Optimization Algorithm

Now that we have at our disposal the derivative estimators required for solving the optimization
problem (P2), we may proceed to develop a gradient-based algorithm for obtaining the optimal
schedule (i.e., the optimal slot assignment probability vector E0 = [01,- -- , OMIT for a system with
M transmission sets). In what follows, we limit ourselves to one such algorithm, similar to one
used in [17], simply to illustrate our approach. Looking at (4), we see that our algorithm is such
that it seeks to balance sums of derivatives. The main idea in our algorithm is the following: at
every iteration, find the maximum imbalance condition and adjust the variables Oi so as to reduce
it.

We will proceed by considering two examples, one for the simple case where C = A4 , and one
for the general case C $4 A. Finally, it should be clear that the sample-path-based nature of the
derivative estimators on which our optimization approach relies possesses some inherent "adaptive"
properties in the following sense: if the characteristics of various arrival processes change, then the
derivative estimate also adjusts itself to reflect such a change from the observed data. The third
example in this section is intended to illustrate these adaptive properties by allowing the topology
of a system to change. For brevity we focus on the problem formulation and construction of the
optimization schemes; simulation results and detailed discussions can be found in [7].

1. A Two-Node RN with C = A. In this example, we consider the transmission
scheduling problem with two arrival streams and non-overlapping transmission sets. Our objective
is to determine the optimal slot assignment probabilities so as to minimize the mean packet waiting
time. For this simplified case, the optimization problem is reduced to balancing the derivatives of
the individual packet waiting times. Let rk be the kth observation (iteration) interval over which
we estimate the derivative dWi/d9i and ®(k) = [O(k) O(k)]T the probability vector over this
interval'. At the end of the kth interval we compare individual node derivatives and set i=
argmin14dWi/dO9]. The slot assignment probabilities are adjusted so as to increase the probability
associated with i* (and hence reduce the probability associated with the other arrival stream). In
this simple example, we need only control a single probability. In particular, consider the control
of 01, and let the amount of change for the kth interval be 51, where

dW1  dW2
8 k = dO ×)

and 77k is a "step size" parameter6 . At the end of the kth observation interval we update the node
1 probability as follows:

1 k+ k if dW 2 > dwland (; k
O~k~i) 

d0 2  
dO 1

k+Z1

(k+) j k) if (dW_2 < dW1 and A- < I

0 Ik) otherwise
4 When C = A there is only one arrival stream in each transmission set.

'For this simple network 0. is the probability that a transmission slot is assigned to arrival stream i.

'The step size sequence 71k must be properly chosen to guarantee convergence [8]. Intuitively, use of an excessively
small step size will result in slow convergence, whereas use of an excessively large step size can result in oscillations
and thus lack of convergence.

9



where a decrease in node 1 or node 2 probability is permitted if and only if at the new operating
point E(k+l) we do not violate the stability requirement. Finally, we assume a fixed step 77k = 0.001
and adjust the observation interval according to Tk = kL0 with L0 = 100 node 1 busy periods. The
convergence of such an optimization scheme has been shown in [21].

2. A Four-Node RN with C 5 A. Consider the 4-node RN shown in Figure la where
the objective is to minimize the average packet waiting time in the network. As was discussed
in the introduction, we can translate this broadcast scheduling problem into a polling model with
3 overlapping transmission sets. Using the notation introduced in section 2, we have 21 = {1},
Z2 = {1, 2}, Z3 = {2, 3}, 24 = {3}. The optimization problem can be formulated as:

4 3

mmin fi(Ai)Wi(®) s.t. Z: = 1 (6)
! *k=1

where G = [01,02, 0 3 ]T and fi(Ai) is the fraction of arrivals to the entire network that arrive at
node i (typically a function of node arrival rate) 7. Introducing the new variables Oi, i = 1,--., 4,
observe from the specification of the Zi sets that 01 = 01, 02 = 01 + 02, q3 = 02 + 93, and 04 30.

Then, based on these variables and the normalization condition, we can reformulate the problem
as:

4min i•(Ai)Wi(0i)
i=1

S. t. 01 +03=1

02 + 04 1

Using Lagrangian relaxation and eliminating Lagrange multipliers, we immediately obtain the
following necessary conditions for an optimal point:

awl aw3fi(Ai) = f3 (A3) (7)
____ a03

f2(A2) 0¢2 = A4 (A4 ) (8)

The optimization problem is then reduced to independently balancing two pairs of derivatives.
We proceed as before by adopting a scheme so that at each iteration we minimize the maximum
difference in the pairs of derivatives involved. Recall that the minimization is over the slot assign-
ment probabilities, and, as before, let ®(k) be the slot assignment probability vector over the kth
observation interval, where the duration of the latter is T-r transmission set 1 busy periods. Over
this interval each node i estimates its derivative ST, At the end of the interval, there are two

a~i
cases:

Case 1: If If°-•fwo - f3 ow-o3 I > I 2"f a€ - f, -w--4 then we update the slot assignment proba-
vo1 43 a02 '90

7 To simplify notation, we omit the dependence on Ai when there is no ambiguity.

10



bilities as follows:

-•k Ak; 0 3k+Ak if flo,• >f30 wn and "J0~ > J 0w
0(k) Ak; 0(k)+Ak if Zflo€1 j >f Ova and " <f4w

S9(k) - k •jOk)+Ak/2; O~k)±+Ak/2 if fi~l•- <'f wa and (f2• >fO
O A O(k)+Ak if 1f"1Oo <> f3 1 and (f2'-W 2 f4II

(9)

with

Ak 8 w01  8w 3 1

where r7Ak is the step size parameter. To ensure convergence, the step size sequence must be chosen
to satisfy certain standard conditions (e.g., [8]). One family of sequences which satisfies these

conditions is

1

of ( that change at the (k + 1)th iteration are explicitly shown; all remaining components are the

same as in the prior iteration.

Cae : f 14, -fao8 a < 0€ -f 4 0€' then:I 0 (k))+Ak if fW'W >f40W and f2--¢ > w4a

k .) A (k) + Ak/2; ( + Ak/2 if < and (h > N 804

O(k A M +)±Ak i ~ 5~>3O n 2 f 8 1

3k) =9 9I) Ak; O0k)+Ak if fi9l < f3>-9W-0 and f2_ <f4oo

with
A k fW 2 aW f 47 1 1

77k = M k- -

Finally, the length of the observation interval is controlled as follows:

T  = kL 0  (11)

where L0 is an a priori chosen number of busy periods. The aforementioned optimization procedure
incorporates both step size as well as sample size controly [211. Simulation results under asymmetric
traffic loads can be found in [71.

8 An alternative to controlling the step size sequence is to increase the estimation/observation horizon at each

iteration. This is referred to as "sample size control." The convergence of such a scheme has been formally shown in
[21]. An informal argument is as follows: If the estimators are consistent (which we conjecture to be the case), then
as the observation interval increases, the sample derivative converges to the derivative of the expected waiting time.
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3. Adaptivity properties when topology changes. In this example, we illustrate the
adaptivity of our algorithm subject to a change in the topology of the RN considered in the last
example. In particular, consider once again the 4-node RN in Figure la and assume that a new
node wishes to participate in the transmission process. Moreover the "incoming" node (denoted
as node 5) is located so that it is within the broadcast zone of nodes 1 and 2, i.e., node 5 is a
neighbor of both nodes 1 and 2. The resultant topology is shown in Figure 3a by the inclusion of
the dotted lines. The effect of the change in topology is to alter the transmission sets; the new
transmission sets are now {(1, 2), (2,3), (3,4, 5)} and the resultant polling model is shown in Figure
3b. The change in transmission sets gives rise to modified optimality equations, compared to the
last example. In particular, the new Kuhn-Tucker optimality conditions are:

awl 8W 3Sf 3(A3) (12)

9W2 = + f W5  (13)

A similar optimization scheme as that of example 2 can be now constructed to achieve the desired
derivative balance. Again, a discussion of the simulation results can be found in [7].

4 A Deterministic Scheduling Policy

In practice, a randomized scheduling policy may not be desirable either because it involves a random
number generation process or because it may be required that the time between successive server
visits to a transmission set be bounded by a deterministic constant. In this section, we use our
approach for obtaining optimal slot assignment probabilities in conjunction with the Golden Ratio
(GR) policy presented in [15] to identify a deterministic scheduling policy with certain optimality
properties. Our contribution is therefore to optimize the Golden Ratio policy. We then provide
simulation results aimed at comparing this policy to several others, including our random polling
approach developed in the previous sections. Note that in specifying a deterministic policy, we are
seeking the specification of a scheduling frame: a frame consists of a fixed number F of time slots
with each slot allocated to a given transmission set. The frame repeats itself in time, thus defining
a periodic structure through which the server is assigned to each transmission set. The number F
of slots in the frame is chosen according to a desired upper bound on transmission set intervisit
times. The problem we address here is how to allocate the F slots to the M transmission sets.

The Golden Ratio Scheduling Policy. Let us briefly summarize this policy as presented
in [15]. As before consider M transmission sets and let Oi be the desirable fraction of slots to be

assigned to transmission set i. Let F k -(-) be the kth Fibonacci number, where -1 =

(/•(5) - 1)/2 • 0.618034. Then, let N', i = 1,..-, M be integers such that:

M
[OiFkj < Ng [• FkF and -Ni= Fk (14)

i=1

with N° = 0. Thus
lim Nký = 0i

k-.c Fk
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Figure 3b: Modified Multiclass Polling System
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For each k the GR policy assigns N,' slots to transmission set i and attempts to distribute the
allocation of slots uniformly over a frame of size Fk. Note that although in the limit k -- + oo visits
to transmission set i are equally spaced, because of the generally overlapping transmission set, visits
to a particular node need not be equally spaced.

Let frac(x) = x - [x], aj = frac(jp-') and AFk = {ajj = 0,...,Fk - 1}, where the
nth (1 < n < Fk) smallest element of AFk is associated with the nth slot in the frame. The final
step in the GR policy is then one which assigns to class i the following slots within a frame:

rn~ ~~r 
I--m=1 M=1)

Note that k determines the desired length of the scheduling frame, which we assume is given. Our
task is to specify the optimal Oi, i = 1,.-., M. Once this is done, one can use (14) and (15) to
allocate slots in the frame. Finally, observe that if all 9i are equal then GR reverts to the simple
Round Robin policy discussed next. We illustrate the construction of the GR policy through the
following example.

Example: To illustrate the procedure consider the GR policy corresponding to the optimal
slot allocation probabilities 01 = 0.32; 02 = 0.18 and 93 = 0.50 . Let k = 7 so that we define a
frame of length F 7 = 13, and, using these values of 01, 02, 03 in (14), we get N71 = 4, N2 = 3
and N3 = 6. From (15) the slots corresponding to {0, o-' frac(2 '-'), frac(3o-')} are assigned to
class 1; the slots corresponding to {frac(4V-'),-. - , frac(6v-&)} are assigned to class 2 and, lastly,
the slots corresponding to {frac(7p-1),..., frac(12sp-')} are assigned to class 3. Consequently we
can write A13 = {0, W-1, frac(2(p-), --. , frac(12W-')}. Evaluating the individual terms in A13 and
rearranging then in an increasing order (recalling that the nth smallest element corresponds to the
nth slot) we obtain the following polling sequence: 1 --- 2 --* 3 -+ 1 --* 3 ---+ 3 - 2 - 3 - 1 -+ 2
3 --+ 1 --+ 3.

The Round Robin Policy In the Round Robin (RR) policy, assuming M transmission
sets, slots are assigned to each transmission set according to the following simple sequence: 1
2 -+ ... -- M---+ 1 - 2 - ... -- M.... If we define a frame of length M slots, then RR
assigns each transmission set exactly 1 slot in every M slots. RR scheduling policies in the context
of polling system have been well researched and have been shown to be optimal (over the class
of all admissible policies) for systems with symmetric traffic and non-overlapping transmission
sets [22, 15]. We conjecture a similar result for overlapping transmission sets. In particular the
superiority of RR over random polling, under symmetric traffic, can be attributed to the higher
variance of the intervisit time (time, in slots, between successive visits to a transmission set) in

random polling. However as we deviate from symmetric traffic conditions, RR rapidly deteriorates
in performance, whereas random polling is fairly 'robust.' The last observation is true since random
polling will adapt to the changing traffic and allocate slots to reflect the change. The optimized
GR policy may be thought of as an effort to combine the variance properties of the frame structure
with the adaptive nature of random polling in order to design a frame which reflects the optimal

slot allocation probabilities.

The Maximal Traffic Scheduling Policy The Maximal Traffic Scheduling Policy (MTP)
is a variant to the optimal GR policy where, rather than using the optimal Oi's to construct the
frame, we construct a frame such that the frequency of visits to a particular transmission set is
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a reflection of the 'maximal traffic' at that transmission set. Equivalently MTP assigns priorities

based on the maximum arrival rate to a transmission set. For example, if in Figure lb we let the
arrival rates be A, = 0.1, A 2 = 0.2, A3 = 0.3, A4 = 0.2, then the maximal traffic at transmission

set 1 is max(Al, A2 ) = 0.2; similarly for transmission sets 2 and 3 the maximal traffic is 0.3.

Consequently the desirable fraction of slots to be assigned to transmission sets 1, 2 and 3 is 2 _8',8

and respectively. Using the same procedure as for the GR (see (15)) the MTP polling sequence

is: 1 -- 3 -+ 2 -+ 3 --+ 2 --+ 1 --+ 3 -- 2.
MTP is an inherently conservative policy in that it ignores the overlapping structure and

allocates slots assuming that if an arrival stream belongs to a particular transmission set, then
all packets from that stream are served in that transmission set. The efficiency of MTP is con-
tingent on the arrival rates of overlapping arrival streams (streams that belong to more than one

transmission set). For example, if the maximal arrival rate in each transmission set corresponds

to a non-overlapping stream, then MTP incurs no penalty by ignoring the overlapping structure.
Alternatively, if the maximal rate corresponds to an overlapping stream, then MTP assigns surplus
slots to that transmission set at the expense of increasing the mean intervisit time for streams not
belonging to that set. Finally, if the maximal arrival rate is the same for each transmission set then
MTP reverts to RR.

A comparison of random polling (as developed in previous sections), RR, optimal GR (where

the optimization is based on the slot assignment probability vector e* determined through our ap-
proach), and MTP is presented in [7] for various system parameter (arrival rates and distributions).

The conclusion drawn is that in each case GR performs better than RR or random polling; however
random polling, even under optimal slot assignments, does not always perform better than RR.
The last observation is attributed to the higher variance of the intervisit time in random polling.

5 Scheduling in Networks with Voice Traffic

For the remainder of the report we focus on scheduling voice calls in an N-node network with (for

simplicity) N non-overlapping (distinct) transmission sets. The analysis readily extends to the case
with overlapping transmission sets. In this model, 'transmission set' is synonymous with 'node'

and thus, for brevity, the latter terminology is adopted. Recall that voice traffic is delay-sensitive
traffic in the following sense: voice packets cannot be queued for more than n time slots, where n

is fixed. Thus, upon arrival, a voice call is accepted if it can be assigned a transmission slot within
the call setup time9 otherwise it is blocked. Once a call is accepted, then due to the cyclic nature of
the polling policy, we can guarantee that packets belonging to this call are assigned a transmission
slot every n time slots. We consider a cyclic policy, where the polling cycle is specified by a frame

comprised of n slots, such that a slot is uniquely assigned to a particular transmission set. Thus, a
frame is characterized by a vector [cl,.. ., c,] where ci E {1,-. - , N} is the transmission set (node)
assigned to slot i. Our objective then is to determine the optimal frame that minimizes the average
call blocking probability.

The delay-sensitive blocking model can be used to model voice call processing in an N-node
multihop RN [10, 24]. When processing voice traffic with circuit switching, a voice call arriving

9In this report the call setup time is defined as the maximum duration a call can be queued before a decision to

accept/reject the call is made.
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at a node reserves (for the duration of the voice call) the desired bandwidth at each node along a
multihop path. If, upon arrival of a voice call, bandwidth is unavailable at any of the intermediate
nodes required, the call is blocked. This is also referred to as 'voice admission control', a problem
also considered in [1] using a model not based on slotted time, but rather frequency division
multiplexing to overcome the problem of channel access conflicts. In the context of our slotted-time
model, Time Division Multiplexing (TDM) is employed to provide contention-free multiplexing of
the bandwidth. Moreover, the duration of a time slot is determined by the bandwidth requirement
of each node (for simplicity, we assume that the bandwidth requirements are the same at all nodes).

In the general TDM framework, a frame consisting of n time slots is defined so that each slot
is assigned to a voice call (or several voice calls belonging to the same transmission set). The size
of the frame (i.e., the number of slots n) is chosen so that proper voice transmission is ensured.
The frame is repeated in time so that the controller assigns the server to each transmission set in
accordance with the frame structure. Thus, a call is blocked if it cannot be assigned a slot in the
TDM frame. The design of the frame then represents a means of controlling the performance of the
system in terms of the blocking probability of calls. In the remainder of this section we describe
the call arrival process in more detail, and define two modes of delay-sensitive operation, termed
slot delay blocking and frame delay blocking.

We refrain from providing a specific model for voice; rather, we assume that sampling and
encoding are such that at most one packet is submitted for transmission per frame by any individual
call. This guarantees that if a call is accepted, then no packet from that call will be queued for
service. We can now describe our model as follows. At each node i, i =, ... , N, there is a process
characterizing voice call arrivals. We assume an arbitrary interarrival distribution for calls, and
allow for correlations between call arrivals. The jth call at node i is characterized by the pair
(A., 7j.), where A. is the call arrival epoch and 7j' is the call duration, specified as a number of
frames. The discrete random variable has an arbitrary distribution. Equivalently i7 can be
viewed as the number of packets in the jth node i call. Note that Aý and 77j' do not have be known
apriori. The decision to accept or reject a call is made independent of the call duration, and
moreover, once the call is accepted, it is guaranteed one slot per frame for the duration of the call.

Next, we describe the operation of the system from node i's point of view; the operation is
the same from the point of view of any other node. The server is assigned to nodes based on a frame
consisting of n slots (as already mentioned, n depends on the characteristics of the delay-sensitive
traffic we are serving). Each slot is assigned to some node. Thus, from node i 's perspective, the
frame consists of slots assigned to i (transmission slots) and slots assigned to some other node
(vacation slots). Suppose a frame is such that ni slots are assigned to node i. For any time instant,
let fi, 0 < fi < ni, be the number of transmission slots not committed to any ongoing node i call.
Then, when a call (A>, 7j) is submitted to the system, the call is admitted if fi > 0, in which case fi
is decremented by 1; otherwise, the call is blocked and considered lost. Moreover, this call reserves
the slot it is assigned for the next 77j frames, i.e., if the jth call is accepted and begins using the kth
slot of the mth frame on the time line, then it reserves the kth slot for the {(rn+ 1), ., (rn+m - 1)1
frames. These slots are now considered unavailable to future voice calls arriving at i.

The model is complete once we specify the call setup time, i.e., how long an arriving call
can wait for an accept/reject decision. We consider two variants on the call setup time. In the
first variant, henceforth referred to as Slot Delay (SD) blocking, an arriving call is queued until the
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beginning of the next slot (vacation or transmission) only, resulting in a call set up of one time
slot. A call is therefore blocked if within one slot duration of the call arrival epoch an available
transmission slot is not assigned to node i (recall that a transmission slot is deemed available if
it has not been reserved by any prior voice call). This is true regardless of whether there are any
transmission slots actually available in the frame. If the call is accepted, it proceeds to reserve slots
in subsequent frames as described in the preceding paragraph.

Alternatively, in Frame Delay (FD) blocking, the decision to accept calls is made at the
beginning of each frame (for a maximum call setup of 2n - 1 slot durations'°); all calls that arrive
during a frame are therefore queued up to the beginning of the next frame. At that time, those
calls that cannot be assigned an available transmission slot are blocked. As before, if call (At, 7i)
is accepted, it reserves the slot it is assigned for 7. frames. Note that this model allows for an
arbitrary selection of which calls at the beginning of any frame will be blocked, whereas in SD
queuing the First-In-First-Out property is always preserved. It is also worth pointing out that, in
FD blocking, if there are fi > 0 available transmission slots when a call arrives, the precise slot
identity in the frame which is assigned to this call does not affect the performance of the system
in terms of future blocked calls.

6 Discrete Optimization Problem Formulation

We now formulate the scheduling problem as an optimal slot allocation problem. Let cj denote the
node assigned to slot j in a frame consisting of n slots. Then, let S be the finite set of feasible
frames where:

S-" {[c,' ,cn] : cj E {1," N}

By "feasible" we mean that the frame must be chosen to satisfy some basic requirements, such as
that at least one slot is assigned to each node. For any s E S, let Ji(s) = E[Li(s)] be the node i
cost function, where as before Li(s) is the sample node i cost. Then, our objective is to select s
E S so as to solve the following discrete optimization problem:

Problem P3:
N

min 1E Li(s)]
SES =

where /3i is the weight associated with node i. This is generally a difficult problem, as it involves
both optimization over a discrete set and estimation of the total cost under all possible frames s E S.
Rather than attempting to solve it, we transform (P3) into a continuous parameter optimization
problem as follows.

6.1 Transforming the Discrete Optimization Problem into a Continuous Opti-
mization Problem

Let Of = P[cj i], independent of the slot index j = 1,...,n. We can then construct a frame

through a randomization mechanism based on a probability vector 0 = [01, ... , ON], with ig i

"0 The maximum call setup corresponds to a voice call that arrives just after the beginning of a frame and is assigned
the last time slot in the subsequent frame.
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1, whereby each slot is independently assigned to node i with probability Oi. In this setting, 0
represents the control parameter which can be optimally selected so as to minimize the desired cost
function. In particular, we replace problem (P3) by the following constrained continuous parameter
optimization problem:

Problem P4:

N N

min-f8iE[Li(O)] s.t. 1Oi =6ii

The relationship between the slot assignment probability vector 0 and the actual frame s can be
made precise as follows. Let r = [rl,-.. , r,,] be an n-dimensional vector of independently generated
random numbers with every rj uniformly distributed in [0, 1]. A frame s(9, r) = [cl,..., c,] is
obtained using the standard inverse transform technique for generating random variates cl, ... , c,
as follows [16]:

cj = min {i: rj < Ok, i= 1, NJ (16)
k=1

It is then clear that, for a given r, by adjusting the parameters 91, i 1 ,...,N, we can affect cj,
j = 1, ... , n, and, consequently, control the design of the frame. From a notational standpoint, it
will be useful to distinguish between a frame generated through (16), which is denoted by s(O, r),
and a frame denoted by s, which is simply an element of the set S.

The obvious advantage of replacing the discrete optimization problem (P3) by the continuous
optimization problem (P4) is the fact that the latter may be solved through standard nonlinear
programming techniques (e.g., using a Lagrangian relaxation approach). Moreover, if closed-form
expressions for J&(') are available, (P2) is reduced to solving a system of algebraic equations. If,
on the other hand, such expressions are not available, then we can still resort to standard gradient-
based optimization algorithms (hill-climbing or steepest descent). Thus we need to derive estimators
similar to those developed in [7] and in section 2.

Since our goal then is to estimate OE[Li(9)]/90i from a single sample path, we need to
generate a sample path of RN operation in a stochastic environment. To do so, we need to specify
a frame s(9, r). Assuming that a control vector 0 is specified, then a sample path is characterized by
the vector r and we write in (P4) E[Li(O)] = E[Li(s(O, r))]. Consequently,we see that the solution
of (P4) is dependent on the initial selection of r, which is subsequently held fixed throughout the
optimization procedure. If we repeat the process with a new initial r, then, in general, a different
optimal point 0* is attained. A solution to (P4) is therefore characterized by the pair (0*, rk) where
the subscript refers to the kth optimization run. However, we claim that, the frame s(O*,rk) is
fixed for all k, and, under certain conditions, it is also the solution to (P3).

In the next section we adopt the Marked Slot methodology proposed in [4] in order to obtain
an unbiased estimate of aji for any node i = 1, N. Note that J&(') is a function of 9i only,
i.e., the fraction of calls blocked at node i depends only on the fraction of slots assigned to i. We
can therefore concentrate on an isolated node i. Recall that a frame, from node i's perspective, is
comprised of transmission and vacation slots; therefore a frame s = [Cl, ... , c,] can be represented
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by the sequence {uj}'I 1 where the Boolean variable uj is given by

j Iif the jth slot in frame s is a transmission slot for node i{ 0 otherwise

For some given 0 and r we can construct s through the following:

1 if cj = i{ 0 otherwise (17)

where cj is given by (16). Alternatively, since from node i's point of view slot j in the frame is a
transmission slot with probability Oi and a vacation slot with probability (1 - O9), we have

1 i1 r<<Oi1 ifj (18)
U3  = 0 otherwise

where r' [r ,...,. T ] is a vector of independently generated random numbers, each uniformly
distributed in [0, 1], which can be obtained from the original vector r through a simple linear
transformation.

7 Derivative Estimation through the Marked Slot Approach

In this section we use the concept of marking (as defined earlier; see section 2) transmission slots in
order to obtain unbiased derivative estimates based on observation of a single sample path of our
system. The fundamental difference between marking a slot in a purely random policy as opposed
to a frame-based one is that in the latter the marking of a slot in a given frame also results in the
marking of the same slot in every subsequent frame. We refer to the j-marked slot system as the
sample path generated when the jth transmission slot in the nominal frame is marked. Let us now
concentrate on the specific performance measure of interest to our problem, i.e., let Ji(9i) be the
expected fraction of calls blocked at node i after K call arrivals, which we will denote by Pi. Define
the following sample path quantities for each node i:

"* bi [bi(j)] - Total number of blocked calls at node i in the nominal [j-marked slot] system

"* ai(j) - Total number of node i calls accepted in the jth transmission slot of any frame.

"* ai(k) - Number of call arrivals at node i during the kth frame

"* di(k) - Number of call completions at node i during the kth frame

"* f1(k) - Number of transmission slots available to node i in the kth frame (i.e., slots assigned
to i which are not currently used by a node i call)

Then, we consider the sample function L(Oi,w) = bi/K, with Pi = E[bj]/K. Note that we limit
ourselves here to sample paths defined by K call arrivals at node i. Under standard ergodicity
conditions, we expect that as K - oo, L converges a.s. to the steady-state blocking probability at
node i. With the notation defined above we have the following theorem (the proof can be found in
[5]):
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Theorem 2 An unbiased estimate of d is given by:

dP, 1 1l
d- [bi - bi(j)] (19)

et - j=1

In summary, (19) requires us to calculate the change in performance when the jth (for all j E A)
transmission slot is marked in the nominal frame. In the remainder of this section we present
expressions for evaluating this change, in terms of quantities directly observable on the nominal
sample path, first operating under SD blocking and then FD blocking. Again, for brevity, we will
present only the final result and omit the actual derivation.

7.1 Derivative Estimation with Slot Delay Blocking

Recall, that the effect of marking the jth slot in the first frame is to mark the jth slot in every
subsequent frame. The consequences of such a coupled marking is that all calls that were originally
accepted in the jth transmission slot of any frame in the nominal system, will now be blocked
in the j-marked system. Therefore, the change in number of node i blocked calls when the jth
transmission slot is marked is given by ai(j) or the total number of node i calls accepted in the jth
transmission slot of any frame. Thus we have the following result:

Theorem 3 An unbiased estimate of -isgivenby:

dPi bi/K - 1 (20)
dOi] , Oi

The proof can be found in [5].
Note that since the estimator in (20) is unbiased, it follows that

dP, E [bt/K- 11
dO. 0,J

A= -1 (21)

Oi

The first-order differential equation in (21) can be solved to obtain the linear equation for Pi:

Pi = 7hL 1+ 1 (22)

where ih is the slope, an unbiased estimate of which is given by (20). The ramification of this
result is that (P4) is now transformed into a linear programing problem and can be efficiently
solved. It is interesting to note that this result is easily derived through the "perturbation-like"
argument given above, which is completely independent of the call arrival process or the distribution
characterizing call durations. It is an example of a simple sample-path-type argument' that can be
used not to derive explicit derivative estimates, but to establish a functional relationship between
a performance metric, Pi, and a parameter of interest, 9i.
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7.2 Derivative Estimation with Frame Delay Blocking

The primary difference between slot marking with SD and FD blocking is that, in the latter,
marking a transmission slot does not necessarily imply that a call, if accepted in the marked slot,
will be blocked in the perturbed system. Define a "tagged' call to be a call that is accepted in
the nominal but not in some j-marked sample path. Then, by definition, Abi(j) is given by the
total number of tagged calls over the observation interval. Therefore if we can monitor the tagging
process then we can derive the appropriate estimator. Before proceeding further we define

Kn E 1[sj = i] = 1,...,N
j=1

where 1(.) is the standard indicator function. Thus, ni is simply the number of slots allocated to
node i in some frame s. We shall now make the following simplifying assumption for our problem:

9 Al: Li(s) depends only on the number of slots assigned to node i, i.e., Li(s) = Li(ni).

Clearly, Al is justified when the sample function is the blocking probability under FD blocking.
However, the assumption would not hold in cases where the identity of the slots assigned to node
i affects that node's cost function. For example, if the sample function were the individual node
mean waiting time, then clearly the latter is a function of the position of the transmission slots
within the frame, and not just of the number of such transmission slots. Lastly, note that as a
consequence of Al there can be at most one tagged call in the nominal system at any instant.

To formalize the process of call tagging, we define the binary variable zi(k), where we use
zi(k) = 1 to denote the fact that there is a tagged call at the beginning of the kth frame. The
dynamics of the tagging process are then given by:

S1 if [ai(k) >_ fi(k) + di(k)] and

Zi~k + 1) [(zi(k) = 0) or (tagged call departs in frame k)]
0 if (tagged call departs in frame k) and [ai(k) < fi(k) + di(k)]
zi(k) otherwise

with initial condition zi(l) = 0. We claim that (for details see [5]):

Theorem 4 An unbiased estimate of d is given by:

[dPi 1 iAI F
dOJ,] K= i E 1[ai(k) > fi(k) + d1(k)]l [(Z.(k) = 0) or (tagged call departs)]

k=1

where F is the number of frames contained in a sample path defined by K call arrivals at node i.

Finally, a reduced-variance estimator can be obtained by exploiting the fact that Oi = EIAL/n.
Thus, the estimator we finally use (which, in general, will no longer be unbiased) is

[dP,] n F

dOi K] = K E l[ai(k) Ž fi(k) + di(k)]l [(z,(k) = 0) or (tagged call departs)] (23)
k=1

For the remainder of the report we focus on the optimization problem assuming FD blocking.
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8 Convergence to a Global Optimum

Before presenting our main result, let us summarize our approach by means of the following opti-
mization scheme (Si). For brevity, we denote the estimate in (23) by Di.

1. Initially select some r and 0(o). Hence, determine an initial frame s(') = s(0(°),r) through
(16).

2. Observe a sample path under s(6' 0 1, r) and estimate the derivatives Dý°) for all i = 1, -. , N.

3. For any m = 0, 1,-.-, iterate as f 11hw's
o(M+T) hn m) (24)

M+ a n, r3  0(m+') i 1,.. N} (25)

k=1

with some provisions to ensure that ZN=I 0(m) = 1 for all m= 0, 1,...

4. Observe a sample path under s(O("'), r) to estimate the derivatives D~m) for all i = 1,. -, N,
and repeat step 3 until we satisfy stopping condition.

Of course, (24) is a standard stochastic approximation scheme driven by the derivative esti-
mates D•n with {17•} an appropriately selected step size sequence. There are several important
observations: first after an update in the auxiliary vector 0 (m), the frame is also updated using
the transformation defined in (16). Second, the iterative scheme is terminated when we reach a
stopping condition, and not necessarily when O's have converged. In particular, the stopping
condition is defined as one where

max{D; ), i =1,.--

is minimized over the iteration index m. Finally, note that r remains fixed throughout the process.
For more details on the algorithm the reader is referred to [6].

In addition, we make the following assumption regarding the cost functions of interest:

. A2: For all i = 1,--, N, Li(ni) is such that Li(ni + 1) - Lj(n1 ) > Li(n1 ) - Li(ni - 1).

We can now establish the following result. Let us first consider a specific sample path and apply
the optimization scheme (S1). Let 0' be the probability vector when the stopping condition is met
in (24), and let s(O', r) be the corresponding frame. This frame is an optimal one in the discrete
space S, i.e., s(9', r) = s', where s- is independent of r and of the sequence {f(m)}, m = 0, 1,..
which leads to the stopping point in (24).

Theorem 5 Under assumptions A1-A2, the optimization scheme (S2) applied to a particular sam-
ple path of the underlying system yields a frame which is optimal in the discrete space S.

The proof can be found in [6].

We next present two applications of this approach to voice call processing in RNs. We first
consider the optimal frame design to minimize blocking in a fully connected RN. In the second
application, we consider the optimal admission control problem in a multihop RN.
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9 Optimal TDM Frame Design

This application is motivated by the need to schedule voice call transmissions (broadcast mode)
in an N-node Radio Network [24]. In particular consider a 3-node RN and for simplicity, assume
that all nodes are neighbors of every other node i.e., the network is fully connected. The stochastic
discrete optimization problem is then to select the optimal frame s' to minimize E=1 f iPi(s) where
Pi(s) is the node i blocking probability operating under FD blocking.

We employ a gradient based optimization algorithm (see [17]), where the parameters of in-
terest are: (a) the observation interval T-k (specified in terms of the number of calls arrivals) over
which the derivatives dPi/d9i are estimated, and (b) the step size 77k which is used to control the
adjustment at the kth update. In the algorithm considered here we assume a constant step size
77= 1.0 and increasing observation interval lengths. In particular, Tk = Tk-1 + C with 'rl = 1000 and

C 200 node 1 call arrivals. At the end of the kth observation interval we compare individual node
derivatives and set i* = argmini[dPi/dOi] and j* = argmaxi[dPi/d9i]. The slot assignment proba-
bilities are adjusted so as to increase the probability associated with i* and reduce the probability
associated with j*.

In the simulation results shown below, we assume a T1 frame with n = 24 slots, and a
symmetrically loaded system with Poisson arrivals (Ai = 0.2 V i = 1, .., 3) and fixed call durations
of 5 frames. Thus, even though this system is difficult to analyze, it follows from the symmetry
that the optimal frame is [8, 8, 8]. We considered three single-run optimization experiments (with
different randomization vectors ri, r 2, r3 ). In each case, the initial slot assignment probability
vector is 0(0) = [0.7, 0.15, 0.15]. Table 1 shows the initial and final frames, as well as the final slot
assignment probabilities, where the latter two are indexed by x, the number of iterations on 0 until
we first reach the optimal frame. After this point we oscillate between the optimal and one of
its neighbors. The oscillatory behavior is typical of most gradient-based iterative schemes and in
practice it is easy to identify this situation and select the true optimal allocation.

Exp. s(°) r s8() X
1 (18,3,3) r3 (8,8,8) [0.391,0.261,0.348] 29
2 (20,3,1) ri (8,8,8) [0.292,0.197,0.511] 30
3 (21,1,2) r 2  (8,8,8) [0.263,0.185,0.552] 38

Table 1: Frame Optimization for a 3-node RN

10 Optimal Admission Control in Blocking Networks:

In this application we determine the optimal admission control policy to minimize blocking in
networks with fixed routing (specified as Source/Destination pairs). Each S/D pair can be viewed
as a, typically multihop, circuit where the ith such circuit is denoted by ci. We consider a 4-node
network with 5 S/D pairs (see Figure 4a). We assume homogenous resources at each node, in
particular each node in the network has n transceivers, and such that a transceiver can be used
for simultaneously transmitting and receiving a packet. In tandem queue networks (see Figure
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4), when establishing a circuit, we assume that a call needs to reserve a transceiver at the source
and intermediate nodes only, and not at the destination node, which does not have to transmit 11 .
Therefore, in Figure 4, multihop calls simultaneously reserve the resource at two nodes (e.g., for a
c4 call we reserve a transceiver at nodes 1 and 2), whereas all other calls only reserve transceivers
at one (source) node.

Call admission is concerned with the decision to accept or reject a call. We consider a simple
threshold based call admission policy where a 'ci voice call' is accepted if and only if there are less
than ti calls currently active over circuit i. In addition we require the policy to be work conserving,
i.e., a ci call is always assigned a transceiver if the threshold is not exceeded. Finally the thresholds
ti are chosen so as not to violate the physical constraints (limited number of transceivers per node)
of the system. The latter can be expressed as linear constraints on the thresholds. The optimization
problem is then to select the values of t, so as to minimize the system performance subject to the
system constraints

t1 + t4 = n

t2 +t4 +t5 = n
t3 + t5 = n

To solve for the optimal thresholds, we convert the tandem queueing model to a multiclass polling
model. Let the transceivers be sequentially indexed, and observe that cl and cs calls can be
assigned the same transceiver since their respective paths do not overlap. Therefore, by analogy
with the polling model, cl and c5 constitute a transmission set. Similarly we can define two more
transmission sets as T2 = {c1, C2, C3} and T3 = fc3, C41. The polling model is shown in Figure 4b.
Our objective is to select the optimal frame s* = [n*, n*, n*] so as to minimize the average network
blocking, where ni is the number of transceiver assigned to transmission set i.

Finally, observe that the threshold associated with any call type is given by the total number
of transceivers assigned to that call type. That is,

t "- E nk

le : iETk

Therefore, the optimal thresholds are given by the following:

t; =n*2
S=n;

t; nI + n;

t; n; + n3*

We have performed 2 sets of single-run optimization experiments. In each case, the initial slot
assignment vector is 0(0) = [0.4, 0.2, 0.4t and the system is observed for 50 parameter updates. We

employ a gradient based optimization algorithm with a constant step size mdk = 0.25 and increasing

"We are in effect assuming that receivers are readily available, and that only transmitters are a scarce resource.
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observation interval. In particular m-k = -rk-1 + C with C = 200 calls. The system parameters for
the experiments are given as:

Parameter Set 1: 24 Transceivers per Node

"* Poisson Arrivals: A1 = A3 = 0.1; A2 = A4 = A5 = 0.2

"* Call Durations: 774 = 775 = 5; 771 = 172 = 773 = UNI(1, 9)

"* Initial Observation Interval (ro): 2000 Call Arrivals

Parameter Set 2: 24 Transceivers per Node

"* Poisson Arrivals: Ai = 0.2 Vi = 1,..-, 5

"* Call Durations: 74 = 775 = 5; 1 = 772 = 773 = UNI(1,9)

"* Initial Observation Interval (ro): 2000 Call Arrivals

Define the load on circuit i to be pi =- Ai/qi where 77i = 1/77i. In experiments 1 and 2 we assume
24 transceivers per node (equivalently T1 links between nodes) and consider both asymmetric and
symmetric traffic in the network respectively. Moreover, for both parameter sets we assume that c4

and c5 calls have constant duration (5 frames), whereas all remaining call durations are uniformly
(recall that we permit only integral frame lengths) distributed with mean 5.

Tables 2 - 6 give the system blocking, frame design and the corresponding slot assignments
at the nth iteration, for the aforementioned parameter sets. For each parameter set we consider

several initial frame configurations corresponding to different r vectors. From the results we can
make several observations; first for blocking networks with symmetric traffic (i.e., pi is the same
for each circuit), the optimal policy is to never accept a c4 or c5 call (see Table 5 - 6)12. The
corresponding optimal thresholds are therefore t, = 12 = f3 = n; t4 = t5 = 0. This is to be
expected since both c4 and c5 calls reserve a transceiver at two nodes along the multihop path,
whereas all other calls reserve only one transceiver. Therefore by accepting a c4 call (and thereby
reserving a transceiver at nodes 1 and 2) we are automatically blocking a cl and c2 call, whereas
by blocking a c4 call we have the possibility of accepting two calls. Now since since each call is of
the same priority, and the arrival rates are the same, the optimal policy is never to accept c4 calls.

A similar argument hold for c5 calls. However once the load is different on different circuits, the
optimal policy is no longer to always reject multihop calls (see Table 1-3). Secondly, 0 is optimized
conditioned on an initial vector r. Thus, we observe that although in Tables 1 and 3 the initial
frame is common, 0* is different for each case. However as is conjectured, the optimal frame is the
same for each pair (0*, rk).

12We conjecture that this observation holds true irrespective of ti, actual value of the load. Therefore, even when
pi is sufficiently small such that the uncontrolled (i.e., subject to no admission control) network can sustain all offered

traffic, the optimal oplicy is to never accept a c4 or c5 call.
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11 Conclusions and Future Work

We have considered the transmission scheduling problem in an N- node Radio Network with ho-
mogeneous traffic (exclusively voice or data). The scheduling problem is modelled as a multiclass
polling problem where a single resource must provide service to M predefined transmission sets.
Customers arrive in one of several arrival streams, and a customer from a particular arrival stream
is allowed to join one of several prespecified transmission sets associated with that stream. The
traffic Grade-of-Service requirements lead to different scheduling polices, in particular, we consider
a random polling policy for data traffic and a cyclic polling policy for voice traffic. We develop
derivative estimation algorithms and use them in conjunction with a gradient-based optimization
scheme to adaptively alter the schedule (in a stochastic operating environment) to achieve the
desired system performance. An important feature of the proposed methodology is that it is in-
dependent of the nature of the node arrival processes (and arrival rate information, except for
checking that no stability requirements are violated). Finally, for the case of data traffic, we use
the optimal slot assignment probabilities to construct a cyclic or deterministic scheduling policy,
using the Golden Ratio policy [15].

In the context of voice call scheduling, the proposed optimization scheme can be viewed as a
new approach to solve a class of resource allocation problems with combinatorially hard stochastic
features. Also, the underlying ideas for derivative estimation using marking and phantomizing tech-
niques apply to general performance measures - not just the waiting times or blocking probabilities.
Therefore, estimates of more general performance measures (e.g., probability that a customer delay
exceeds some deadline, or probability that the queue length at a node exceeds some value) can
also be obtained. This raises the interesting possibility of investigating scheduling problems invol-
ving traffic classes with different performance requirements, an issue of considerable importance in
networks designed to support voice, video and data (see [24]).

Another natural next step for our work is to address the problem of routing in multihop
radio networks. This can be done by defining appropriate transmission sets and scheduling packet
transmissions accordingly. Although this problem becomes considerably more difficult when the
network combines both voice and data, we believe the same basic approach described in this report
can be applied.

Finally, it is obviously of great interest to investigate distributed implementations of the
various algorithms we have presented for transmission scheduling. We believe this is indeed possible,
but have left this research direction for future work.
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Experiment 1: T1 Link with Asymmetric Traffic:

Para. Set r n s() O(n) p(n)

1 r, 0 (14,4,6) [0.400,0.200,0.400] 0.537
1 r, 10 (7,11,6) [0.202,0.398,0.400] 0.510
1 r, 20 (6,12,6) [0.187,0.456,0.357] 0.509
1 r, 30 (6,12,6) [0.153, 0.508,0.339] 0.508
1 r, 40 (5,14,5) [0.127, 0.546, 0.327] 0.506
1 r, 50 (5,14,5) [0.124, 0.550,0.326] 0.508

Table 2: Optimization of 4-node Tandem RN

Para. Set r n (n) 0(n) P(')

1 r 2  0 (10,5,9) [0.400,0.200,0.400] 0.513
1 r 2  10 (8,9,7) [0.264,0.421,0.315] 0.512

1 r 2 20 (7,11,6) [0.208, 0.542, 0.250] 0.511
1 r 2 30 (6,12,6) [0.149,0.612,0.239] 0.507
1 r 2 40 (5,14,5) [0.145, 0.631,0.224] 0.507
1 r 2 50 (5,14,5) [0.143, 0.634,0.223] 0.506

Table 3: Optimization of 4-node Tandem RN

Para. Set r n s(n) (n) p(n)

1 r 3  0 (14,4,6) [0.400, 0.200,0.400] 0.538

1 r 3  10 (6,12,6) [0.174, 0.426,0.400] 0.508
1 r3  20 (6, 12,6) [0.160, 0.482, 0.358] 0.509
1 r3  30 (5,13,6) [0.133, 0.533,0.334] 0.507
1 r 3 40 (5,13, 6) [0.135, 0.582, 0.283] 0.507
1 r 3 44 (5,14,5) [0.137,0.594,0.269] 0.509
1 r3  50 (5,14,5) [0.137, 0.595,0.268] 0.508

Table 4: Optimization of 4-node Tandem RN
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Experiment 2: T1 Link with Symmetric Traffic:

Para. Set r n s() O(n) p(n)

2 r, 0 (14,4,6) [0.400,0.200,0.400] 0.579
2 r, 5 (6,13,6) [0.155,0.445,0.400] 0.516
2 r, 10 (4, 16,4) [0.080, 0.640,0.280] 0.499
2 r, 15 (0,21,3) [0.000,0.784,0.216] 0.479

2 r, 20 (0,21,3) [0.000,0.876,0.124] 0.471
2 r, 25 (0,21,3) [0.000, 0.935,0.065] 0.479

2 r, 30 (0,24,0) [0.000,0.995,0.005] 0.469

Table 5: Optimization of 4-node Tandem RN

Para. Set r n s(n) (n) p(_ )
2 r 2  0 (10,5,9) [0.400,0.200,0.400] 0.567
2 r 2  5 (8,9,7) [0.257, 0.442,0.301] 0.541
2 r 2 10 (5,14,5) [0.131,0.653,0.216] 0.508
2 r2 15 (0,20,4) [0.060,0.824,0.116] 0.483

2 r 2 20 (0,23,1) [0.060, 0.930,0.010] 0.473
2 r 2 21 (0,24,0) [0.060, 0.640,0.000] 0.471

Table 6: Optimization of 4-node Tandem RN
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